
BoxLib User’s Guide

J. Bell, A. Almgren, V. Beckner, M. Day, M. Lijewski
A. Nonaka, and W. Zhang

Center for Computational Sciences and Engineering
Lawrence Berkeley National Laboratory

https://ccse.lbl.gov

May 6, 2013

Contents

Table of Contents iii

Preface v

1 Introduction 1
1.1 What is BoxLib? . 1
1.2 High-Level Overview . 1
1.3 BoxLib Directory Structure . 3

2 Getting Started 7
2.1 Overview of Data Structures . 7
2.2 The MultiFab . 12
2.3 Simple Example - Fortran90 . 15
2.4 Simple Example - C++ . 18
2.5 Visualization Using VisIt . 19
2.6 Running in Parallel with MPI . 20
2.7 Running in Parallel with MPI/OpenMP (3D ONLY) 21

3 Advanced Topics With Fortran90 BoxLib 23
3.1 Boundary Conditions . 23
3.2 Multiple Levels of Refinement . 28
3.3 Adaptive Mesh Refinement . 29
3.4 Linear Solvers . 29

iii

Preface

The current version of the BoxLib User’s Guide can be found in the BoxLib git repository in
BoxLib/docs. Visit our website at https://ccse.lbl.gov for free access to BoxLib. Any ques-
tions, comments, suggestions, etc., regarding this User’s Guide should be directed to Andy Nonaka
of CCSE at AJNonaka@lbl.gov. Further information about BoxLib can be found by contacting
Ann Almgren of CCSE at ASAlmgren@lbl.gov or by visiting our website.

(c) 1996-2000 The Regents of the University of California (through E.O. Lawrence Berkeley Na-
tional Laboratory), subject to approval by the U.S. Department of Energy. Your use of this software
is under license – the license agreement is attached and included in the BoxLib home directory as
license.txt or you may contact Berkeley Lab’s Technology Transfer Department at TTD@lbl.gov.
NOTICE OF U.S. GOVERNMENT RIGHTS. The Software was developed under funding from
the U.S. Government which consequently retains certain rights as follows: the U.S. Government
has been granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
worldwide license in the Software to reproduce, prepare derivative works, and perform publicly and
display publicly. Beginning five (5) years after the date permission to assert copyright is obtained
from the U.S. Department of Energy, and subject to any subsequent five (5) year renewals, the U.S.
Government is granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
worldwide license in the Software to reproduce, prepare derivative works, distribute copies to the
public, perform publicly and display publicly, and to permit others to do so.

v

Chapter 1

Introduction

1.1 What is BoxLib?

BoxLib is a software library containing all the functionality to write massively parallel, block-
structured adaptive mesh refinement (AMR) applications in two and three dimensions. BoxLib was
developed at the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley
National Laboratory and is freely available on our website at https://ccse.lbl.gov. The most
current version of this User’s Guide can be found in the BoxLib git repository at BoxLib/Docs.
Any questions, comments, suggestions, etc., regarding this User’s Guide should be directed to Andy
Nonaka of CCSE at AJNonaka@lbl.gov. Further information about BoxLib can be found by con-
tacting Ann Almgren of CCSE at ASAlmgren@lbl.gov or by visiting our website.

If you are new to BoxLib, we recommend you read Chapters 1 and 2 and familiarize yourself
with the accompanying tutorial code. After working through Chapter 2, you will be able to run the
tutorial code on as many cores as you like! Then, in Chapter 3 we enhance the Fortran90 tutorial
code with additional features.

1.2 High-Level Overview

Key features of BoxLib include:

• C++/Fortran90 and pure Fortran90 versions

• Optional subcycling in time (C++ only)

• Support for cell-centered, face-centered, edge-centered, and nodal data

• Support for hyperbolic, parabolic, and elliptic solves on hierarchical grid structure

• Supports hybrid MPI/OpenMP parallel programming model

• Demonstrated scaling of linear solvers (parabolic and elliptic solvers) to 100,000 processors
and hydrodynamics (hyperbolic solvers) to over 200,000 processors

• Plotfile format can be read by VisIt, yt, and AmrVis

1

• Basis of mature applications in combustion, astrophysics, cosmology, porous media, and fluc-
tuating hydrodynamics

• Freely available on our website at https://ccse.lbl.gov

1.2.1 Parallel Programming Model

The fundamental parallel abstraction in BoxLib is the MultiFab, which holds the data on the union
of grids at a level of refinement. A MultiFab is composed of multiple “Fortran array boxes” (i.e.,
FArrayBoxes or Fabs); each Fab is a multidimensional array of data on a single grid. Whenever
“work” needs to be done using data from a MultiFab, the Fabs composing that MultiFab are
distributed among different processors to be worked on simultaneously. Fabs at each level of refine-
ment are distributed independently. The software supports two data distribution schemes, as well
as a dynamic switching scheme that decides which approach to use based on the number of grids at
a level and the number of processors. The first scheme is based on a heuristic knapsack algorithm,
which emphasizes load balancing; the second is based on the use of a Morton-ordering space-filling
curve, which emphasizes on data locality for faster grid-to-grid communication. MultiFab opera-
tions are performed with an “owner computes” rule with each processor operating independently
on its local data. For operations that require data owned by other processors, the MultiFab op-
erations are preceded by a data exchange between processors to fill ghost cells. Each processor
contains meta-data that is needed to fully specify the data locality and processor assignments of
the Fabs. At a minimum, this requires the storage of an array of coordinates specifying the index
space region for each box at each level of refinement. The meta-data can thus be used to dynami-
cally evaluate the necessary communication patterns for sharing data amongst processors, enabling
us to optimize communications patterns within the algorithm. By using a hybrid MPI-OpenMP
approach to parallelization (see below), we are able to compute with fewer, larger grids, and thus
the size of the meta-data is substantially reduced.

1.2.2 Hybrid MPI–OpenMP

The basic parallelization strategy uses a hierarchical programming approach for multicore archi-
tectures based on both MPI and OpenMP. In the pure-MPI instantiation, each Fab is assigned to
a core, and each core communicates with every other core using only MPI. In the hybrid approach,
where on each socket/node there are n cores that all access the same memory, we can divide our
domain into fewer, larger grids, and assign each Fab to a socket/node, with the work associated
with that grid distributed among the n cores using OpenMP.

1.2.3 Parallel I/O

Data for checkpoints and analysis are written in a self-describing format that consists of a direc-
tory for each time step written. Checkpoint directories contain all necessary data to restart the
calculation from that time step. Plotfile directories contain data for post-processing, visualization,
and analytics, which can be read using VisIt, yt, or AmrVis (a customized visualization package
developed at CCSE for visualizing data on AMR grids, also freely available on our website). Within
each checkpoint or plotfile directory is an ASCII header file and a subdirectory for each AMR level.
The header describes the AMR hierarchy, including number of levels, the grids at each level, the
problem size, refinement ratio between levels, time step, time, etc. Each of the subdirectories

2

contains the data associated with the MultiFab for that level, which is stored in multiple files.
Checkpoint and plotfile directories are written at user-specified intervals.

Restarting a calculation can present some difficult issues for reading data efficiently. In the
worst case, all processors would need data from all files. If multiple processors try to read from
the same file at the same time, performance problems can result, with extreme cases causing file
system thrashing. Since the number of files is generally not equal to the number of processors and
each processor may need data from multiple files, input during restart is coordinated to efficiently
read the data. Each data file is only opened by one processor at a time. The IOProcessor creates
a database for mapping files to processors, coordinates the read queues, and interleaves reading its
own data. Each processor reads all data it needs from the file it currently has open. The code tries
to maintain the number of input streams to be equal to the number of files at all times. Checkpoint
and plotfiles are portable to machines with a different byte ordering and precision from the machine
that wrote the files. Byte order and precision translations are done automatically, if required, when
the data is read.

1.2.4 Scaling

In Figure 1.1 we present weak scaling results for several of our codes on the Cray XT5 Jaguarpf at
OLCF. Jaguarpf has two hex-core sockets on each node. We assign one MPI process per node and
spawn a single thread on each of the 12 cores. Results are shown for our compressible astrophysics
code, CASTRO; the low Mach number code, MAESTRO; and our low Mach number combustion code,
LMC. In the MAESTRO and CASTRO tests, we simulate a full spherical star on a 3D grid with one
refined level (2 total levels). LMC is tested on a 3D methane flame with detailed chemistry using
two refined levels. MAESTRO and LMC scale well to 50K-100K cores, whereas CASTRO scales well to
over 200K cores. The overall scaling behavior for MAESTRO and LMC is not as close to ideal as that
of CASTRO due to the communication-intensive linear solves performed at each time step. However,
these low Mach number codes are able to take a much larger time step than explicit compressible
formulations in the low Mach number regime.

1.3 BoxLib Directory Structure

BoxLib is the base directory in a hierarchy of subdirectories that support parallel, block-structured
AMR applications in C++ and Fortran90. A schematic of the BoxLib directory structure is shown
in Figure 1.2.

• Docs/

Contains this BoxLib User’s Guide.

• Src/

BoxLib source code. The C++ source code is split into several directories. The Fortran90
source code is contained in one directory.

– C AMRLib/

– C BaseLib/

3

 0

 5

 10

 15

 20

 25

 30

 35

 40

768 12K 96K 211K

A
ve

ra
ge

 T
im

e
pe

r
T

im
e

S
te

p
(s

ec
on

ds
)

Number of Cores

CASTRO Weak Scaling on Jaguarpf

 0

 50

 100

 150

 200

 250

768 12K 96K

A
ve

ra
ge

 T
im

e
pe

r
T

im
e

S
te

p
(s

ec
on

ds
)

Number of Cores

MAESTRO Weak Scaling on Jaguarpf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

768 3K 12K 49K

A
ve

ra
ge

 T
im

e
pe

r
T

im
e

S
te

p
(s

ec
on

ds
)

Number of Cores

LMC Weak Scaling on Jaguarpf

Figure 1.1: Weak scaling results for CASTRO, MAESTRO, and LMC on the Cray XT5 Jaguarpf at OLCF.

– C BoundaryLib/

– F BaseLib/

– LinearSolvers/

Source code for various linear solvers in C++ and Fortran90.

∗ C CellMG/

∗ C NodalMG/

∗ C TensorMG/

∗ C to F MG/

∗ F MG/

• Tests/

Various tests used by BoxLib developers.

– C BaseLib/

– F BaseLib/

– LinearSolvers/

• Tools/

4

Figure 1.2: BoxLib directory structure.

– C mk/

The generic Makefiles that store the C++ compilation flags for various platforms.

– C scripts/

Some simple scripts that are useful for building, running, maintaining codes in C++.

– C Util/

Various utility codes for analyzing plotfiles.

– F mk/

The generic Makefiles that store the Fortran90 compilation flags for various platforms.

– F scripts/

Some simple scripts that are useful for building, running, maintaining codes in Fortran90.

• Tutorials/

Contains sample codes referred to in this User’s Guide.

5

Chapter 2

Getting Started

We now give an overview of common data structures used in BoxLib, followed by a simple example
written in both Fortran90 and C++ that makes use of these structures. The example advances
two scalar variables in time on a single level with multiple grids (no AMR) and produces plotfiles.

2.1 Overview of Data Structures

BoxLib contains the most fundamental objects used to construct parallel block-structured AMR
applications. At each level of refinement, the region covered by that level is divided into grids,
or boxes. The entire computational domain is covered by the coarsest (base) level of refinement
(called level ` = 0 in C++ and called level ` = 1 in Fortran90) and can be represented on one grid
or divided into many grids. Higher levels of refinement have cells that are finer by a “refinement
ratio” of either 2 or 4 (in C++) or 2 (in Fortran90). The grids are properly nested in the sense
that the union of grids at level `+ 1 is contained in the union of grids at level `. Furthermore, the
containment is strict in the sense that, except at physical boundaries (i.e., domain boundaries that
are not periodic), the level ` grids are large enough to guarantee that there is a border at least
nbuffer (typically 4) level ` cells wide surrounding each level `+1 grid (grids at all levels are allowed
to extend to the physical boundaries so the proper nesting is not strict there). See Figure 2.1 for
a sample two-dimensional grid structure.

On a grid, the data can be stored at cell-centers, faces, edges, or corners. In BoxLib, data that
is on an face is termed ‘nodal’ in that one direction (see Figure 2.2). In three-dimensions (not
pictured), data that is nodal in two directions is said to live on edges. Data that is nodal in all
directions lives on the corners of cells (commonly referred to as the nodes). BoxLib uses 0-based
spatial indexing, and for data that is nodal in one or more direction, the integer index corresponds
to the lower boundary in that direction (see Figure 2.2). In our BoxLib applications, the state data
(velocity, density, species, . . .) is typically cell-centered. Fluxes are typically nodal in exactly one
direction (i.e. they are face-centered). A few quantities are nodal in all directions (e.g. the pressure
in the low Mach number projection methods).

• In C++ BoxLib, we must specify the number of spatial dimensions (1, 2, or 3), DIM, at
compile-time. The code that will be built is specifically designed to run only with that
number of dimensions.

7

Figure 2.1: Sample grid structure with two levels of refinement. These grids satisfy the requirements
that the base grid covers the entire computational domain and the grids are properly nested. Note
that refined grids are allowed to extend to physical domain boundaries without coarser buffer cells.

• In Fortran90 BoxLib, we build dimension-independent code at compile-time, and tell the
program the dimensionality of the problem via a runtime inputs file.

To simplify the description of the underlying AMR grid, BoxLib provides a number of classes.
We now briefly summarize some of the major classes.

2.1.1 IntVect

IntVects are DIM-tuples of integers that are used to define indices in space. In C++, an example
of an IntVect in 2D would be (C++ source code will be shaded blue):

IntVect iv(3,5);

In Fortran90, we don’t use IntVects, but instead use standard arrays of integers (Fortran90 source
code will be shaded green):

integer :: iv(2)

iv(1) = 3

iv(2) = 5

8

Figure 2.2: Some of the different data-centerings in two dimensions: (a) cell-centered, (b) nodal in
the x-direction only (face-centered), and (c) nodal in both the x- and y-directions. Note that for
data that is nodal in one or more direction, the integer index corresponds to the lower boundary in
that direction. Also note that BoxLib uses 0-based indexing, e.g., in each of these centerings, the
red point has the same indices: (1,2). Not shown is the case where data is nodal in the y-direction
only. Also not shown is the three-dimensional edge-centered case, where the data is nodal in exactly
two directions.

2.1.2 Box

A Box is simply a rectangular domain in space and does not hold any data. A Box contains the
indices of its low end and high end, IntVect lo and IntVect hi.

• In C++, a Box also contains an IndexType (cell-centered, face-centered, or nodal) for each
spatial direction.

• In Fortran90, a Box also contains the dimensionality of the Box.

To build a Box in C++ use:

IntVect iv_lo (0,0);

IntVect iv_hi (15 ,15);

Box bx(iv_lo ,iv_hi);

To build a Box in Fortran90 use:

type(box) :: bx

integer :: iv_lo(2), iv_hi (2)

iv_lo (1:2) = 0

iv_hi (1:2) = 15

bx = make_box(lo ,hi)

The computational domain is divided into non-overlapping grids. The collection of grids at the
same resolution comprise a level. Figure 2.3 shows three grids at the same level of refinement. Note
that this figure cannot represent the base level of refinement, since it would require that the grids
span the problem domain. The position of the grids is with respect to a global index space that
covers the entire domain at that level and uses 0-based indexing. For example, the Box associated
with grid 1 in the figure has lo = (2,6) and hi = (5,13).

9

Figure 2.3: Three boxes that comprise a single level. At this level of refinement, the domain is
16×16 cells and the global index space runs from 0 to 15 in each coordinate direction. Note that
these grids cannot be at the coarsest level, since it would require that the grids span the problem
domain.

• Example: For a simulation with 32 cells in each direction at the coarsest level, the global
index space for the coarsest level runs from 0 to 31 in each coordinate direction. Assuming
refinement ratios of 2, the next finer level will have a global index space running from 0 to
63 in each coordinate direction (corresponding to 64× 64 zones if fully refined), and the next
finer level will have a global index space running from 0 to 127 in each coordinate direction
(corresponding to 128× 128 zones if fully refined).

2.1.3 BoxArray

A BoxArray is an array of Boxes. The size of the array is the number of Boxes in the BoxArray.
Suppose your problem domain has lo indices (0,0) and hi indices (15,15), and you want to define
a BoxArray to contain four 8× 8 boxes to cover the problem domain. In Fortran90, you could do
the following:

integer :: lo(2), hi(2)

type(box) :: bx(4)

type(boxarray) :: ba

lo(1) = 0

lo(2) = 0

hi(1) = 7

10

hi(2) = 7

bx(1) = make_box(lo ,hi)

lo(1) = 8

lo(2) = 0

hi(1) = 15

hi(2) = 7

bx(2) = make_box(lo ,hi)

lo(1) = 0

lo(2) = 8

hi(1) = 7

hi(2) = 15

bx(3) = make_box(lo ,hi)

lo(1) = 8

lo(2) = 8

hi(1) = 15

hi(2) = 15

bx(4) = make_box(lo ,hi)

call boxarray_build_v(ba ,bx)

This is rather cumbersome, so instead we use other BoxLib functions to build the same BoxArray:

type(boxarray) :: ba

integer :: lo(2), hi(2)

type(box) :: bx

lo (1:2) = 0

hi (1:2) = 15

bx = make_box(lo ,hi)

call boxarray_build_bx(ba ,bx) ! the boxarray has one 16^2 box

call boxarray_maxsize(ba ,8) ! the boxarray has four 8^2 boxes

The analogous code in C++ is

IntVect lo(0,0), hi(15 ,15);

Box bx(lo ,hi);

BoxArray ba(bx); // the BoxArray has one 16^2 box

ba.maxSize (8); // the BoxArray has four 8^2 boxes

2.1.4 layout (Fortran90 Only)

A layout is a more intelligent BoxArray, since it contains a BoxArray as well as the associated
processor assignments, Box connectivity, and many other parallel constructs. In the simplest case,
if we have a BoxArray ba (obtained from the example above), a layout can be defined using:

type(layout) :: la

call layout_build_ba(la ,ba)

In C++, the information that is contained in the Fortran90 layout is part of the MultiFab class.

2.1.5 FArrayBox

A FArrayBox (or Fab) is a “Fortran array box” that holds data. It contains the Box that it is built
on as well as a pointer to the data that can be sent to a Fortran routine. In Fortran90, Fab data is

11

stored in a four-dimensional array, (nx,ny,nz,nc) in size, regardless of the dimensionality of the
problem. Here nc is the number of components, for instance representing different fluid variables.
For 2D problems, nz=1.

In BoxLib, we don’t usually deal with Fabs alone, but rather through MultiFabs, described
next.

2.1.6 Floating point data

Floating point data in C++ is declared as Real which is typedef to either float or double

depending on how PRECISION is set in the GNUmakefile. This is defined in REAL.H.
In Fortran90, the bl types module defines a type dp t that is double precision. Floating point

types should be declared using real (kind=dp t).

2.2 The MultiFab

MultiFabs are so important that we will give them their own section. A MultiFab is a collection
of all the Fabs at the same level of refinement.

• In C++, a MultiFab is defined using a BoxArray, number of components, and number of
ghost cells that each Fab will have.

• In Fortran90, a MultiFab is defined using a layout, number of components, and number of
ghost cells that each Fab will have.

A MultiFab has a “valid” region that is defined by the BoxArrayor layout. Each Fab in the
MultiFab is built large enough to hold valid data and ghost cell data, and thus the Box associated
with each Fab is a grown version of the corresponding Box from the BoxArray. Thus, a Fab has no
concept of ghost cells, it merely has a single Box that identifies it.

To build a MultiFab, we require a layout (in Fortran90) or a BoxArray (in C++). In Fortran90,
using the layout built above, we build a MultiFab using:

type(multifab) :: data

call multifab_build(data ,la ,2,6) ! build the multifab with 2 components

! and 6 ghost cells

... ! do fun stuff with the data

call multifab_destroy(data) ! free up memory to prevent leaks

In C++, using the BoxArray built above, you could either directly build a MultiFab using:

MultiFab data(ba ,2 ,6); // build a MultiFab

or a pointer to a MultiFab using:

MultiFab* data = new MultiFab(ba ,2 ,6); // build pointer to MultiFab

... // do fun stuff with the data

12

delete data; // need to free the memory

2.2.1 Accessing MultiFab Data

Here is some sample Fortran90 code to access data within a MultiFab:

integer :: i,dm ,ng ,nc ,lo(2),hi(2)

type(multifab) :: data

real(kind=dp_t), pointer :: dp(:,:,:,:)

... ! build multifab ‘‘data ’’ as described above

dm = data%dim ! dm is dimensionality

ng = data%ng ! ng is number of ghost cells

nc = data%nc ! nc is number of components

! loop over the grids owned by this processor

do i=1,nfabs(data)

dp => dataptr(data ,i) ! dp points to data inside fab

lo = lwb(get_box(data ,i)) ! get lo indices of box

hi = upb(get_box(data ,i)) ! get hi indices of box

select case(dm)

case (2)

call work_on_data_2d(dp(:,:,1,:), ng , nc , lo , hi)

case (3)

call work_on_data_3d(dp(:,:,:,:), ng , nc , lo , hi)

end select

end do

! fill periodic domain boundary and neighboring grid ghost cells

call multifab_fill_boundary(data)

...

subroutine work_on_data_2d(data , ng, nc, lo, hi)

integer :: lo(2), hi(2), ng

double precision :: data(lo(1)-ng:,lo(2)-ng:,:)

! local variables

integer :: i,j,n

do j=lo(2),hi(2)

do i=lo(1),hi(1)

do n=1,nc

! some silly function I made up

data(i,j,n) = (i + j) * n

end do

end do

end do

13

end subroutine work_on_data_2d

In C++:

#if defined(BL_FORT_USE_UPPERCASE)

#define FORT_WORK_ON_DATA WORK_ON_DATA

#elif defined(BL_FORT_USE_LOWERCASE)

#define FORT_WORK_ON_DATA work_on_data

#elif defined(BL_FORT_USE_UNDERSCORE)

#define FORT_WORK_ON_DATA work_on_data_

#endif

extern "C"

{

void FORT_WORK_ON_DATA (

Real* data , const int* Ncomp , const int* ng ,

const int* lo, const int* hi);

}

int main()

{

int Ncomp = 2, Nghost = 6;

... // build pointer to MultiFab* ‘‘data ’’ as described above

// MFIter is a ‘‘MultiFab Iterator ’’ that essentially

// loops over grids

for (MFIter mfi(*data); mfi.isValid (); ++mfi)

{

const Box& bx = mfi.validbox ();

FORT_WORK_ON_DATA ((* data)[mfi]. dataPtr(),

&Nghost , &Ncomp , bx.loVect(), bx.hiVect ());

}

// fill periodic domain boundary and neighboring grid ghost cells

data ->FillBoundary ();

}

The FORT WORK ON DATA calls a Fortran90 subroutine which is nearly identical to the Fortran90
example given above. The only difference is the subroutine name cannot have the 2d or 3d in its
name. Thus, the 2d and 3d versions are both named subroutine work on data, and must be writ-
ten in different .f90 files, where the make system determines which version to compile based on DIM.

The multifab fill boundary and FillBoundary functions fill all ghost cells on periodic do-
main boundaries, as well as interior ghost cells with values that can simply be copied from the
valid region of a neighboring grid at the same level of refinement. For single-level problems that are
periodic in all directions, these functions fill all ghost cells. We will discuss non-periodic domain
boundaries and fine grid ghost cells near coarse-fine interfaces in Chapter 3.1.

14

2.2.2 Other MultiFab Functions

setVal is a simple subroutine that sets the MultiFab data to a particular value. In Fortran90, use:

! set all variables to 0.0; ‘‘all=.true.’’ means set the ghost cells also

call setval(data ,0.d0 ,all=.true.)

In C++, use:

data ->setVal (0.0); // set all variables to 0.0, including ghost cells

copy is a simple subroutine that copies data from one MultiFab to another. In Fortran90, use:

! copy components 1 and 2 from data_src into data_dest ,

! including the ghost cells. calling sequence is

! (1) destination multifab , (2) first component of destination ,

! (3) source multifab , ! (4) first component of source ,

! (5) number of components , (6) ghost cells

call multifab_copy_c(data_dest ,1,data_src ,1,2,6)

In C++, use:

// copy components 0 and 1 from data_src into data_dest ,

// including the ghost cells. calling sequence is

// (1) destination multifab , (2) source multifab ,

// (3) first component of destination , (4) first component of source ,

// (5) number of components , (6) ghost cells

MultiFab ::Copy(*data_dest ,*data_src ,0,0,2,6)

There are many other subroutines available for adding, subtracting, multiplying, etc., com-
ponents of MultiFabs, finding the min/max value, norms, number of cells, etc. Refer to
BoxLib/Src/F BaseLib/multifab f.f90 or BoxLib/Src/C BaseLib/MultiFab.H for a complete
listing.

2.3 Simple Example - Fortran90

We now provide a complete tutorial code that uses some concepts discussed above. The code
also writes plotfiles that can be viewed, and can be run in parallel if you are working on a ma-
chine with MPI and/or OpenMP support. The Fortran90 version of this example is contained in
BoxLib/Tutorials/HeatEquation EX1 F/.

In this example, we advance the equation:

∂φ

∂t
= ∇2φ; φ(t = 0) = 1 + e−100r2 , (2.1)

on a domain from [-1,1] in each spatial direction, where r is the distance to the point (x, y, z) =
(0.25, 0.25, 0.25). Note that we are placing the initial Gaussian profile slightly off-center. This
asymmetry will be important in later sections when we examine the effects of non-periodic bound-
ary conditions. We will assume that ∆x = ∆y = ∆z and use a fixed time step with ∆t = 0.9∆x2.
We begin with a simple single-level, forward Euler discretization, periodic boundary conditions,

15

and no refinement (i.e., only one level).

The basic time-advancement strategy uses the following temporal discretization:

φn+1
ij − φnij

∆t
= [∇ · (∇φ)]ij . (2.2)

In the explicit case, we first compute ∇φ, at faces using:

(∇φ)i+1/2,j =
φni+1,j − φnij

∆x
. (2.3)

We will refer to these face-centered gradients as “fluxes”. Next, we compute the update by taking
the divergence of these fluxes,

[∇ · (∇φ)]ij =
(∇φ)i+1/2,j − (∇φ)i−1/2,j

∆x
+

(∇φ)i,j+1/2 − (∇φ)i,j−1/2

∆y
. (2.4)

We use a flux divergence formulation because it will enable a more natural extension to multiple
levels of refinement, where we will be concerned with conservation across levels. Note that in this
explicit case, since ∆x = ∆y, the Laplacian reduces to the standard five point stencil in two di-
mensions (seven point stencil in three dimensions).

Since the fluxes live on faces, we need face-centered MultiFabs, i.e., MultiFabs that are nodal
in one spatial direction. In advance.f90, we build them as follows:

! an array of multifabs; one for each direction

type(multifab) :: flux(phi%dim)

! build the flux (:) multifabs

do i=1,dm

! flux(i) has 1 component , 0 ghost cells , and is nodal in direction i

call multifab_build_edge(flux(i),phi%la ,1,0,i)

end do

In the problem directory, you will see the following files:

• GNUmakefile

This contains compiler settings and directories required by the make system to build the code.

– BOXLIB HOME

Change this to point to the BoxLib home directory. Alternatively, you can define
BOXLIB HOME as an environment variable on your system.

– NDEBUG (’t’ or ’<blank>’) for TRUE or FALSE

“not debug” (we know, confusing). If ’t’, modifies compiler flags to build a more opti-
mized version of the code. The program will run faster, but have fewer runtime error
checks.

– MPI (’t’ or ’<blank>’)

Indicate whether you want your executable to be MPI-compatible. MPI must be installed
on your machine in order to use this, and you must modify some of the make scripts, as
will be discussed later.

16

– OMP (’t’ or ’<blank>’)

Turns on OpenMP compiler flags to compile in any OpenMP directives in the code. We
will discuss OpenMP further in Section 2.7.

– PROF (’t’ or ’<blank>’)

Turns on timer compilation flags. Timers are useful for optimizing your code since they
tell you what subroutines are taking the most time and require more optimization. Note
that you still have to write timers into your code. We will discuss the implementation
of timers in Section ??.

– COMP (’gfortran, Intel, . . .)’

The Fortran compiler. Supported options include gfortran, Intel, PathScale, PGI,
and Cray. The gfortran compiler seems to be bug-free on all systems we’ve run on, so
stick with this unless you have good reason to change. Intel after version 9 seems flaky.
PathScale (available at OLCF and NERSC) seems to work as long as you don’t turn
the optimization flags too high, and seems to run the fastest if you can actually get it
to work. Cray seems to give similar performance as PathScale (perhaps because Cray
bought out PathScale recently). PGI (available at OLCF and NERSC) seems to work
fine, but is slower than the others.

– MKVERBOSE (’t’ or ’<blank>’)

Verbosity of compile-time output.

• GPackage.mak

List of local files needed to be included in the build. The GNUmakefile points to this.

• main.f90, init phi.f90, advance.f90, write plotfile.f90

Source code that is not within the BoxLib/Src/ tree. Note that if a file that exists in the
BoxLib/Src/ tree also exists in the local directory, the local copy takes precedence as long as
the GNUmakefile lists your local directory as a VPATH LOCATIONS before the BoxLib source
code directory, BoxLib/Src/F BaseLib.

• inputs 2d, inputs 3d

Input files to customize the simulation parameters.

To build the code, edit the GNUmakefile and simply type “make”. An exectubale will appear
that has some indication (but not complete) about what setting you used in the GNUmakefile. To
run the code on a single processor, simply type, for example (terminal commands and non-source
code files are shaded in red),

./main.Linux.gfortran.exe inputs_2d

The program will complete and there will be a series of plotfiles, e.g., plt00000, plt00100, etc.,
in the run directory. You can visualize the data and make animations using VisIt (available at
https://wci.llnl.gov/codes/visit/); refer to Section 2.5.

17

2.4 Simple Example - C++

The C++ version of this example is contained in BoxLib/Tutorials/HeatEquation EX1 C/.

• GNUmakefile

This contains compiler settings and directories required by the make system to build the code.

– BOXLIB HOME

Change this to point to the BoxLib home directory. Alternatively, you can define
BOXLIB HOME as an environment variables on your system.

– DEBUG (’TRUE’ or ’FALSE’)

Debug mode. If ’FALSE’, modifies compiler flags to build a more optimized version of
the code. The program will run faster, but have fewer runtime error checks.

– USE MPI (’TRUE’ or ’FALSE’)

Indicate whether you want your executable to be MPI-compatible. MPI must be installed
on your machine in order to use this, and you must modify some of the make scripts, as
will be discussed later.

– USE OMP (’TRUE’ or ’FALSE’)

Turns on OpenMP compiler flags to compile in any OpenMP directives in the code. We
will discuss OpenMP further in Chapter 2.7.

– PROFILE (’TRUE’ or ’FALSE’)

Turns on timer compilation flags. Timers are useful for optimizing your code since they
tell you what subroutines are taking the most time and require more optimization. Note
that you still have to write timers into your code. We will discuss the implementation
of timers in Chapter ??.

– COMP (’g++, Intel, . . .)’

The C++ compiler. Supported options include g++, Intel, PathScale, PGI, and Cray.
See compiler notes above.

– FCOMP (’gfortran, Intel, . . .)’

The Fortran compiler. See compiler notes above.

– DIM (’1’, ’2’, or ’3’)

Dimensionality of the problem. Unlike Fortran90, you need to set this in the C++
version.

– PRECISION (’DOUBLE’ or ’FLOAT’)

Precision of real numbers. You can use FLOAT for single-precision real numbers to save
memory.

– EBASE (’main’, . . .)

The executable string will begin with this.

• Make.package

List of local files needed to be included in the build. The GNUmakefile points to this.

18

• main.f90, writePlotFile.cpp, writePlotFile.H, init phi 2d.f90, init phi 3d.f90, advance 2d.f90,
advance 3d.f90

Source code that is not within the BoxLib/Src/ tree. Note that if a file that exists in the
BoxLib/Src/ tree also exists in the local directory, the local copy takes precedence as long
as the GNUmakefile lists your local directory in the include line before before the BoxLib

source code directories.

• inputs 2d, inputs 3d

Input files to customize the simulation parameters.

To build the code, simply type “make”. An exectubale will appear that has some indication
(but not complete) about what setting you used in the GNUmakefile. To run the code on one
processor, simply type, for example,

./ main2d.Linux.g++. gfortran.ex inputs_2d

The program will complete and there will be a series of plotfiles, e.g., plt00000, plt00100, etc.,
in the run directory. You can visualize the data and make animations using VisIt (available at
https://wci.llnl.gov/codes/visit/); refer to Section 2.5.

2.5 Visualization Using VisIt

First, download and install VisIt from https://wci.llnl.gov/codes/visit/. To open a single
plotfile, run VisIt, then select “File” → “Open file ...”, then select the Header file associated the
the plotfile of interest (e.g., plt00000/Header). Assuming you ran the simulation in 2D, here are
instructions for making a simple plot:

• To view the data, select “Add” → “Pseudocolor” → “phi”, and then select “Draw”.

• To view the grid structure (not particularly interesting yet, but when we add AMR it will
be), select “ → “subset” → “levels”. Then double-click the text “Subset - levels”, enable the
“Wireframe” option, select “Apply”, select “Dismiss”, and then select “Draw”.

• To save the image, select “File” → “Set save options”, then customize the image format to
your liking, then click “Save”.

Your image should look similar to the left side of Figure 2.4.

In 3D, you must apply the “Operators” → “Slicing” → “ThreeSlice”, with the “ThreeSlice
operator attribute” set to x=0.25, y=0.25, and z=0.25. You can left-click and drag over the image
to rotate the image to generate something similar to right side of Figure 2.4.

To make a movie, you must first create a text file named movie.visit with a list of the Header

files for the individual frames. This can most easily be done using the command:

~/ BoxLib/Tutorials/HeatEquation_EX1_F > ls -1 plt*/ Header | tee movie.visit

plt00000/Header

plt01000/Header

19

Figure 2.4: (Left) 2D image generated with VisIt. (Right) 3D image generated with VisIt.

plt02000/Header

plt03000/Header

plt04000/Header

plt05000/Header

plt06000/Header

plt07000/Header

plt08000/Header

plt09000/Header

plt10000/Header

The next step is to run VisIt, select “File” → “Open file ...”, then select movie.visit. Create an
image to your liking and press the “play” button on the VCR-like control panel to preview all the
frames. To save the movie, choose “File”→ “Save movie ...”, and follow the on-screen instructions.

2.6 Running in Parallel with MPI

We will now demonstrate how to run the example in BoxLib/Tutorials/HeatEquation EX1 F/

using MPI parallelism. To run in parallel using C++ BoxLib is analogous. On your local ma-
chine, if you have MPI installed, you must first configure BoxLib/Tools/F mk/GMakeMPI.mak and
BoxLib/Tools/C mk/Make.mpi to your MPI installation. Then, you can simply build the exe-
cutable as describe before, but with MPI=t in the GNUmakefile. Alternatively, you can override
the settings in GNUmakefile at the command line using, e.g., “make MPI=t”. An executable named
main.Linux.gfortran.mpi.exe will be built. Then you can run the program in parallel using,
e.g.,

mpiexec -n 4 main.Linux.gfortran.mpi.ex inputs_2d

20

To run in parallel on the hopper machine at NERSC, first copy the BoxLib source code into your
home directory on hopper and go to the HeatEquation EX1 F/ directory. The default programming
environment uses the PGI compilers, so we will switch to the gnu programming environment to make
g++ and gfortran available using the command:

module swap PrgEnv -pgi PrgEnv -gnu

Next, in GNUmakefile, set MPI=t, and then type “make” (or alternatively, type “make MPI=t”).
An executable named main2d.Linux.g++.gfortran.mpi.exe will be built. You cannot submit
jobs in your home directory, so change to a scratch space (“cd $SCRATCH” will typically do), and
copy the executable and inputs 2d into this directory. Then you need to create a job script, e.g.,
”hopper.run”, that has contents (for tcsh):

#PBS -q debug

#PBS -l mppwidth =48

#PBS -l walltime =00:05:00

#PBS -j eo

cd $PBS_O_WORKDIR

echo Starting ‘date ‘

aprun -n 48 ./ main2d.Linux.gfortran.mpi.ex inputs_2d

echo Ending ‘date ‘

Note that “mppwidth” and “-n” both indicate the number of cores you are requesting. To
run, simply type “qsub hopper.run”. You can monitor the status of your job using “qstat -u

<username>” and view your position in the queue using “showq”.

2.7 Running in Parallel with MPI/OpenMP (3D ONLY)

Both the C++ and Fortran versions of this tutorial also support hybrid MPI/OpenMP parallelism
for three-dimensional problems only. You may add OMP parallelism to two-dimensional work
loops, but be advised that subroutines within the BoxLib infrastructure are not threaded for two-
dimensional problems. To “thread” the code, we have simply added OpenMP directives (using the
!$omp parallel do construct) to any i/j/k loops we were interested in threading. For example,
in init phi.f90:

!$omp parallel do private(i,j,k,x,y,z,r2)

do k=lo(3),hi(3)

z = prob_lo (3) + (dble(k)+0.5 d0) * dx

do j=lo(2),hi(2)

y = prob_lo (2) + (dble(j)+0.5 d0) * dx

do i=lo(1),hi(1)

x = prob_lo (1) + (dble(i)+0.5 d0) * dx

r2 = ((x -0.25d0)**2 + (y -0.25d0)**2 + (z -0.25d0)**2) / 0.01d0

phi(i,j,k) = 1.d0 + exp(-r2)

21

end do

end do

end do

!$omp end parallel do

This User’s Guide is not a manual on OpenMP, so simply note that this particular construct tells
each thread to work on different values of k, with each thread getting its own local copy of i, j, x,
y, z, and r2.

Finally, to tell the compiler that we would like to run with OpenMP, we make sure to set OMP=t
(in Fortran) or USE OMP=TURE (in C++) in the GNUmakefile. Otherwise, all OpenMP directive are
simply ignored. Note that at runtime you must have set the OMP NUM THREADS environment variable
properly in order for threads to work. Also, note that you can enable/disable MPI independently
from the OMP flag. Finally, here is a sample hopper script (tcsh) for a hybrid MPI/OpenMP job:

#PBS -q debug

#PBS -l mppwidth =48

#PBS -l walltime =00:05:00

#PBS -j eo

setenv OMP_NUM_THREADS 6

cd $PBS_O_WORKDIR

echo Starting ‘date ‘

aprun -n 8 -N 4 -S 1 -ss -d 6 ./main.Linux.gfortran.mpi.omp.exe inputs_2d

echo Ending ‘date ‘

• “mppwidth”: how many total cores requested

• “-n”: total number of MPI tasks

• “-N”: number of MPI tasks per hopper node

• “-S”: number of MPI tasks per NUMA node

• “-ss”: demands strict memory containment per NUMA node

• “-d”: number of OpenMP threads per MPI task

22

Chapter 3

Advanced Topics With Fortran90
BoxLib

We now enhance our heat equation example from the previous section. Below is an outline of how
we will proceed. Each of these sections contains an accompanying tutorial code that builds upon
the previous example.

• In Section 3.1 we develop the capability to handle other (non-periodic) boundary condition
types.

• In Section 3.2 we develop the capability to have multiple levels of refinement using a fixed,
multilevel grid structure.

• In Section 3.3 we develop the capability to adaptively change the multilevel grid structure.

• In Section 3.4 we develop the capability to solve the equation implicitly, using the linear solver
libraries.

3.1 Boundary Conditions

In order to understand how to implement boundary conditions, we shall first describe the general
principles behind working with boundary conditions. The BoxLib/Tutorials/HeatEquation EX2 F/

tutorial continues our heat equation example, but now with some non-periodic boundary condition
support. The boundary condition modules in BoxLib/Src/F BaseLib/define bc tower.f90 and
multifab physbc.f90 can be used as a springboard for developing your own customized boundary
conditions.

3.1.1 General Principles

The basic idea is that every grid has knowledge of the boundary condition type at the low and
high side edge in each direction. The “physical” boundary condition types supported by default
are INLET, OUTLET, SYMMETRY, SLIP WALL, NO SLIP WALL, and PERIODIC. There is also an INTERIOR

boundary condition type, which will be explained below. We use an integer mapping that is
contained in BoxLib/Src/F BaseLib/bc.f90:

23

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

no−slip wall

no−slip wall

inflow outflow

Figure 3.1: Two-dimensional example with 16 - 42grids with INLET, OUTLET, and NO SLIP WALL

boundary conditions. The numbers refer to the grid number.

integer , parameter , public :: PERIODIC = -1

integer , parameter , public :: INTERIOR = 0

integer , parameter , public :: INLET = 11

integer , parameter , public :: OUTLET = 12

integer , parameter , public :: SYMMETRY = 13

integer , parameter , public :: SLIP_WALL = 14

integer , parameter , public :: NO_SLIP_WALL = 15

Examples:

• Consider grid 1 in Figure 3.1. The low-x boundary condition is INLET, and the high-y bound-
ary condition is NO SLIP WALL. The high-x and low-y boundary conditions are INTERIOR,
which means that the ghost cells share the same physical space as cells in the valid region of
another grid. Note that for grids 6, 7, 10, and 11, the boundary condition type for every side
is INTERIOR.

• Figure 3.2 demonstrates a problem with periodicity in the x-direction. In this case, the low-x
boundary condition for grid 1 is PERIODIC. Note there are some similarities between PERIODIC

and INTERIOR boundary conditions when it comes to filling ghost cells in that ghost cell values
are simply copied in from the valid region of another grid. In fact, one can think of PERIODIC
as just a special type of INTERIOR boundary condition. For the other boundary conditions
types, the user can write custom boundary conditions routines to fill ghost cells, which can
involve setting ghost cell values directly, or using interior points and/or physical boundary
conditions in some stencil operation.

• Now, consider an example with refined grids. Figure 3.3 contains three grids at the next level
of refinement. In this case, for grid 1, all of the boundary condition types are INTERIOR, even

24

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

no−slip wall

no−slip wall

periodicperiodic

Figure 3.2: Two-dimensional example with 16 - 42grids with PERIODIC and NO SLIP WALL boundary
conditions. The numbers refer to the grid number.

no−slip wall

no−slip wall

periodicperiodic

1

2 3

Figure 3.3: Two-dimensional example with 3 grids at a finer resolution than the base grid.

though the neighboring valid region data is at a coarser level of refinement. For grid 2, the
low-y boundary condition is NO SLIP WALL, and the other three walls are INTERIOR.

25

3.1.2 Implementation

Typically, we read in integer values from the inputs file for bc x lo, bc x hi, bc y lo, etc., that
correspond to the physical boundary condition types. We then build a bc tower object which is an
array of bc level objects, one for each level of refinement. The bc level contains several integer
array data structures, as can be seen in BoxLib/Src/F BaseLib/define bc tower.f90:

type bc_level

! 1st index is the grid number (grid "0" corresponds to the prob domain)

! 2nd index is the direction (1=x, 2=y, 3=z)

! 3rd index is the side (1=lo, 2=hi)

! 4th index is the variable (only assuming 1 variable here)

integer , pointer :: phys_bc_level_array (:,:,:) => Null()

integer , pointer :: adv_bc_level_array (:,:,:,:) => Null()

integer , pointer :: ell_bc_level_array (:,:,:,:) => Null()

end type bc_level

Each level has a phys bc level array(0:ngrids,dim,2) array, where ngrids is the number of
grids on that level, dim is the dimensionality of the simulation, and the third index refers to the
lower or upper edge of the grid in that coordinate direction. This stores the physical description
of the boundary type (INLET, OUTLET, etc.), which is independent of the variables that live on the
grid. The phys bc level array(0,:,:) refers to the entire domain. If an edge of a grid is not a
physical boundary, then it is set to a default value, typically INTERIOR. These boundary condition
types are used to interpret the actual method to fill the ghost cells for each variable, as described
in adv bc level array and ell bc level array.

Whereas phys bc level array provides a physical description of the type of boundary, the
array adv bc level array describes the action to be taken (e.g. reflect, extrapolate, etc.) for
each variable when filling physical ghost cells on domain boundaries. The prefix “adv ” is some-
what of a misnomer, as this data structure was originally intended to tell advection (or hyper-
bolic) solvers how to fill ghost cells, but now is generally used to fill physical domain bound-
ary ghost cells in any instance where the user needs to set them. The form of this array is
adv bc level array(0:ngrids,dim,2,nvar) where the additional component, nvar, allows for
different state variable that lives on a grid to have different boundary condition actions associated
with it. For example, you could have nvar=1 correspond to the x-velocity, nvar=2 correspond
to density, and nvar=3 correspond to pressure. In the BoxLib/Tutorials/HeatEquation EX2 F/

tutorial, there is only one variable, φ, so obviously nvar=1 shall correspond to φ. When we build
the adv bc level array, we first set all values to INTERIOR, and then overwrite any physical do-
main boundary condition types, as given in phys bc level array. The adv bc level array types
supported by default are (as listed in BoxLib/Src/F BaseLib/bc.f90):

integer , parameter , public :: INTERIOR = 0

integer , parameter , public :: REFLECT_ODD = 20

integer , parameter , public :: REFLECT_EVEN = 21

integer , parameter , public :: FOEXTRAP = 22

integer , parameter , public :: EXT_DIR = 23

integer , parameter , public :: HOEXTRAP = 24

26

To manually fill ghost cells, we call multifab physbc, passing in the state multifab along with
the adv bc level array. The subroutines physbc 1d/2d/3d in BoxLib/Src/F BaseLib/multifab physbc.f90,
indicate how to fill ghost cells. For example,

subroutine multifab_physbc(s,start_scomp ,start_bccomp ,ncomp , &

the_bc_level ,time_in ,dx_in , &

prob_lo_in ,prob_hi_in)

integer , intent(in) :: start_scomp ,start_bccomp

integer , intent(in) :: ncomp

type(multifab) , intent(inout) :: s

type(bc_level) , intent(in) :: the_bc_level

real(kind=dp_t), intent(in), optional :: time_in ,dx_in (:)

real(kind=dp_t), intent(in), optional :: prob_lo_in (:), prob_hi_in (:)

! Local

integer :: lo(get_dim(s)),hi(get_dim(s))

integer :: i,ng ,dm ,scomp ,bccomp

real(kind=dp_t) :: time ,dx(get_dim(s))

real(kind=dp_t) :: prob_lo(get_dim(s)),prob_hi(get_dim(s))

real(kind=dp_t), pointer :: sp(:,:,:,:)

! set optional arguments

time = 0.d0

dx = 0.d0

prob_lo = 0.d0

prob_hi = 0.d0

if (present(time_in)) time = time_in

if (present(dx_in)) dx = dx_in

if (present(prob_lo_in)) prob_lo = prob_lo_in

if (present(prob_hi_in)) prob_hi = prob_hi_in

ng = nghost(s)

dm = get_dim(s)

do i=1,nfabs(s)

sp => dataptr(s,i)

lo = lwb(get_box(s,i))

hi = upb(get_box(s,i))

select case (dm)

case (2)

do scomp=start_scomp ,start_scomp+ncomp -1

bccomp = start_bccomp + scomp - start_scomp

call physbc_2d(sp(:,:,1,scomp), lo , hi , ng , &

the_bc_level%adv_bc_level_array(i,:,:,bccomp), &

time , dx , prob_lo , prob_hi)

end do

...

subroutine physbc_2d(s,lo,hi,ng,bc,time ,dx,prob_lo ,prob_hi)

use bl_constants_module

27

use bc_module

integer , intent(in) :: lo(:),hi(:),ng

real(kind=dp_t), intent(inout) :: s(lo(1)-ng:,lo(2)-ng:)

integer , intent(in) :: bc(:,:)

real(kind=dp_t), intent(in) :: time ,dx(:), prob_lo (:), prob_hi (:)

! Local variables

integer :: i,j

!!!!!!!!!!!!!

! LO -X SIDE

!!!!!!!!!!!!!

if (bc(1,1) .eq. EXT_DIR) then

! set all ghost cell values to a prescribed dirichlet

! value; in this example , we have chosen 1

do j = lo(2)-ng, hi(2)+ng

s(lo(1)-ng:lo(1)-1,j) = 1.d0

end do

else if (bc(1,1) .eq. FOEXTRAP) then

! set all ghost cell values to first interior value

do j = lo(2)-ng, hi(2)+ng

s(lo(1)-ng:lo(1)-1,j) = s(lo(1),j)

end do

...

Note that the optional arguments allow for the use of space and/or time-dependent boundary
conditions.

ell bc level array is the analog to adv bc level array for the linear solvers in BoxLib.
These will be described in Section 3.4.

3.2 Multiple Levels of Refinement

In the BoxLib/Tutorials/HeatEquation EX3 F/ tutorial, we have expanded our example to the
cases of multiple levels of refinement, with the grids fixed in space. Note that there is currently
no subcycling support for Fortran90 BoxLib, so in this example we advance all the grids with the
same time step, and perform synchronization operations between levels.

The big change for this tutorial is that we use a ”multilevel layout” ml layout rather than a
layout, and also multifab phi and dx are now nlevs sized arrays. After initializing or updating
φ, we must fill all ghost cell and synchronize the solution between levels. After we make the fluxes,
we must synchronize the fluxes to maintain conservation.

There are three key subroutines for filling ghost cells and synchronizing data in multilevel
applications. Each of these involves a coarse level and a fine level:

• ml cc restriction sets coarse cell-centered values equal to the average of the fine cells
covering it.

28

• ml edge restriction sets coarse edge-centered values (such as fluxes) equal to the average
of the fine edges covering it.

• multifab fill ghost cells fills fine ghost cells using interpolation from the underlying
coarse data. Note that this operation does not affect ghost cells that would be filled by
multifab fill boundary or multifab physbc.

3.3 Adaptive Mesh Refinement

Now fully implemented in BoxLib/Tutorials/HeatEquation EX4 F/. The basic idea is to “tag” the
cells you with to refine in BoxLib/Src/F BaseLim/

¯
tag boxes.f90. To write your own customized

tagging criteria, copy tag boxes.f90 into your local directory and modify it, since this copy will
take precedence over the version in the BoxLib source.

There are several new parameters that can be set via an inputs file:

• amr buf width: radius (in cells) of tagged cells in addition to those already tagged due to
the criteria in tag boxes.f90.

• cluster minwidth: any newly created grids must be at least this many cells in each direction.

• cluster blocking factor: any newly created grids must have an integer multiple of this
many cells in each direction.

• cluster min eff: This is a real number between 0 and 1 that controls how tightly the
newly created grids match the tagged cells. As this value approaches 1, you will have more,
smaller grids. Another way to think of this is that during the grid creation process, at least
100×cluster min eff percent of the cells in each grid at which the grid creation occurs must
be tagged cells.

• regrid int: frequency, in time steps, on when to regrid the simulation.

It is worth playing around with the inputs files to see what effect these parameters have on the
grid structure.

3.4 Linear Solvers

The tutorial code BoxLib/Tutorials/HeatEquation EX5 F/ contains an implicit version of the
heat equation example. Fortran90 BoxLibcontains a “cell-centered” multigrid solver that solves
linear systems of the form:

(αI −∇ · β∇)φ = RHS, (3.1)

where α, φ, and RHS are cell-centered MultiFab s, and β is an array of MultiFab s that are nodal
in exactly one direction (i.e., one face-centered MultiFabfor each spatial direction). The Laplacian-
like term in the left-hand-side can be discretized in several ways. The simplest discretization option
is similar to a 5-point (7-point in 3D) Laplacian:

∇ · β∇φij =
1

∆x

[
βi+1/2,j

φi+1,j − φij
∆x

− βi−1/2,j
φij − φi−1,j

∆x

]
+

1

∆y

[
βi,j+1/2

φi,j+1 − φij
∆y

− βi,j−1/2

φij − φi,j−1

∆y

]
. (3.2)

29

A fully implicit discretization of the heat equation,

φn+1 − φn

∆t
= [∇ · (∇φ)]n+1 , (3.3)

is equivalent to
(I −∆t∇ · ∇)φn+1 = φn. (3.4)

Thus, we will set α = 1, each β = ∆t, and RHS = φn.

30

